Orthogonal Matching Pursuit with Noisy and Missing Data: Low and High Dimensional Results

نویسندگان

  • Yudong Chen
  • Constantine Caramanis
چکیده

Many models for sparse regression typically assume that the covariates are known completely, and without noise. Particularly in high-dimensional applications, this is often not the case. This paper develops efficient OMP-like algorithms to deal with precisely this setting. Our algorithms are as efficient as OMP, and improve on the best-known results for missing and noisy data in regression, both in the high-dimensional setting where we seek to recover a sparse vector from only a few measurements, and in the classical low-dimensional setting where we recover an unstructured regressor. In the high-dimensional setting, our support-recovery algorithm requires no knowledge of even the statistics of the noise. Along the way, we also obtain improved performance guarantees for OMP for the standard sparse regression problem with Gaussian noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery

Many models for sparse regression typically assume that the covariates are known completely, and without noise. Particularly in high-dimensional applications, this is often not the case. Worse yet, even estimating statistics of the noise (the noise covariance) can be a central challenge. In this paper we develop a simple variant of orthogonal matching pursuit (OMP) for precisely this setting. W...

متن کامل

Sparse recovery via Orthogonal Least-Squares under presence of Noise

We consider the Orthogonal Least-Squares (OLS) algorithm for the recovery of a m-dimensional k-sparse signal from a low number of noisy linear measurements. The Exact Recovery Condition (ERC) in bounded noisy scenario is established for OLS under certain condition on nonzero elements of the signal. The new result also improves the existing guarantees for Orthogonal Matching Pursuit (OMP) algori...

متن کامل

Robust reconstruction algorithm for compressed sensing in Gaussian noise environment using orthogonal matching pursuit with partially known support and random subsampling

The compressed signal in compressed sensing (CS) may be corrupted by noise during transmission. The effect of Gaussian noise can be reduced by averaging, hence a robust reconstruction method using compressed signal ensemble from one compressed signal is proposed. The compressed signal is subsampled for L times to create the ensemble of L compressed signals. Orthogonal matching pursuit with part...

متن کامل

Orthogonal Matching Pursuit for Sparse Signal Recovery

We consider the orthogonal matching pursuit (OMP) algorithm for the recovery of a high-dimensional sparse signal based on a small number of noisy linear measurements. OMP is an iterative greedy algorithm that selects at each step the column which is most correlated with the current residuals. In this paper, we present a fully data driven OMP algorithm with explicit stopping rules. It is shown t...

متن کامل

Dimensionality-reduced subspace clustering

Subspace clustering refers to the problem of clustering unlabeled high-dimensional data points into a union of low-dimensional linear subspaces, whose number, orientations, and dimensions are all unknown. In practice one may have access to dimensionality-reduced observations of the data only, resulting, e.g., from undersampling due to complexity and speed constraints on the acquisition device o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1206.0823  شماره 

صفحات  -

تاریخ انتشار 2012